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FIRE. NOT THE DISTURBANCE YOU THINK IT IS, #%<=h
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Climate Change and Wildfire (@ Los Almos

Studies reveal that wildfire activity will continue to increase due to
climate change

Cumulative area burned 1984-2015
Adapted from Abatzoglu and Williams (2016)
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Ecosystems Need and Are Adapted to Fire  ®tesaames
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Courtesy: Krawchuck et al., 2009. PlosOne
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High-Frequency, Low-Severity and Low-Frequency, High-
Severity Forests
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Ponderosa pine Lodgepole pine
_High-frequency, low-severity fires Low-frequency, high-severity fires
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Structural forest differences and evolutionary traits determine fire
behavior and ecosystem response to fire disturbance

N
P4
P4
s

4 | Los Alamos National Laboratory LA-UR-24-20643




I
<

gh Fuel Density > High Fire Severity = @®!osAlamos

Fire Suppression

.
o

TN TR IR R AT A

L iy

Born: 1950

Capitan, New Mexico

(live mascot)

~ 1944 USFS




Prescribed Fire in Action @ Los Alamos
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Thinning Only Thinning + Prescribed Fire  ~ No Treatment

Photo Credit: Sustainable Northwest, Steve Rondeau (Klamath Tribes Natural Resources Director). Klamath Tribes
restoration prescription and Forest Service prescribed fire (April 2021) after the 2021 Bootleg Fire on the

Fremont-Winema National Forest.
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Prescribed Fire Prevents Ecosystem Transition, But Is
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Understudied

Fire-suppressed forest
structure

Science-driven
prescribed-fire
framework

No prescribed fire,
high risk of ’
severe fire

== Potentlal i
High- severlty fire ~ ecosystem transmon Frequent fire forest structure

» Wildland fire science has been focused on high-severity wildfires but does not address prescribed fire conditions.

» Prescribed fire takes place in marginal burning conditions where forest structure, fuel moisture, etc. have outsizec
controls on successful application.

« Success of prescribed fire depends on a new science basis and more sensitive model applications. - Heirs et al.,
2020. Fire Ecol 16, 11 (2020). https://doi.org/10.1186/s42408-020-0070-8
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Climate Change is Breaking Empirical Fire Models ®!e=femes

*Changing Fire
Conditions

CLIMATE: Temperature,
precipitation (hot ° Observed (NOAA)

droughts). 5 Projected (RCP4.5; CMIP5)
°Empirical models Of . Projected (RCP8.5; CMIP5) We Are Here
the past, such as Rothermel & van Wagner
Rothermels and van developed (1973
Wagners are outside 1 STABLE PAST CONDITIONS
of their validation
range. 1

Fire Models: BEHAVE, 2

SpitFire-FATES, etc. are
all combinations of

Reconstructed (Marcott et al.)
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Rothe rme | Sa nd van BY JEFF TOLLEFSON abnormal fire seasons around the world. -
The giant California fire has torched about #

Wagne r In California, where the states largest 166,000 hectares since late July, and con- £
wildfire on record continues to burn,  tinues to burn in the northern part of the 5

fires are getting bigger and less predict-  state. British Columbia in Canada is now 3

able — so much so that scientists are strug-  experiencing its worst fire season on record 3
gling to model them. Now, two research  (see ‘Scorched earth’). And in late July, after ¥
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Rothermel Fire Spread Model(s) (1972)

R: IRZ(¢W+¢S)
PpeQig

Van Wagner Crown Combustion Model (1975)

Ip = Rywply

IO — (gZh)g/z

Van Wagner Crown Scorch Model (1973)
- 3.9417/6
* (0.1071 + U3)Y/2(60 = T)

What exactly is C?

uuwu

@From Kiil (1975).

where m is moisture content percentage based
on dry fuel and £ is in kilojoules per kilogram.
Heat of ignition, 4, must now be worked into
[1]. Assume that [1] gives the AT required for
crown ignition only at an arbitrary value of
called £, and that the actual required tempera-
ture rise at the crown base varies with the ratio
h/h,. The left-hand side of [1] thus becomes
AT h/h,. Replacing AT/h, by an empirical
quantity C then yields

[4] I, = (Czh)?/2,

where I, is now the critical surface intensity
needed to initiate crowning. According to this
relation, the onset of crown combustion should
take place when the intensity of the surface fire
exceeds I,. The quantity C is best regarded as
an empirical constant of complex dimensions
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whose value is to be found from field obser-
vations.

Two further assumptions are implicit in the
above argument: first, that variation in ambient
temperature is unimportant in view of the much
greater value of AT and, second, that the vertical
spread of fire into the crowns is for practical
purposes independent of crown bulk density.

The most available basis for estimating C
comes from three previously reported experi-
mental crown fires in a red pine plantation (Van
Wagner 1964, 1968). The physical description
of the plantation appears in Table 1 and the
fires’ behaviour in Table 2. The best estimate
of the minimum surface intensity at the time of
crowning was about 2500 kW/m. For a crown
base height of 6 m and a foliar moisture content
of 100%, [4] then yields a value of 0.010 for C.
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Is 3.941 constant everywhere? *
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FIRETEC — 3D Navier-Stokes Fluid Dynamics
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Mechanistic Approach: Crown Scorch @ LosAlames

Solid temperatures above 60 degrees C
assume crown scorch

vV ! )

Unburned Live Fuel ﬁ Combustion Loss

Unburned Dead Fuel . Crown Scorch . Crown Scorch

Potential Scorch
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Compare to Van Wagner’s Data & Model  ®:osaame:

Simulating a hotplate along the surface Validation of Crown Scorch Modeling

. . Van Wagner 1973
to control for energy intensity °

Tree Spacing 2.5 = hy = 39417
Fee Spacing 2.5 m & o0 | * 7 (0.1071 + U*)'/%(60 — T) |
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Buoyant Plume Dynamics

Buoyant Plume Dynamics Create Crown Scorch Variability
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W — Velocity wind structures show

hot air moving up.
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Forest Structure & Crown Scorch ReS|I|ency @ Los Alames
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3D simulation capabilities identify resilient forest
structures that can build ecosystem resiliency.
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Plant Succession Model

» Simulates ecohydrology
response to fire disturbances.
» Loops fire disturbance and
ecohydrological response to
simulate future fire
disturbances and ecosystem
trajectory.
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Forest Structure Matters! @ Los Alamos

Fire Excluded_ Fire Impacted F|re Resilient
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Forest Structure Matters!

Convective Heat Tran
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Testing Prescribed fire Return Intervals  ®tosaime:

Tree Placement &; Description
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» We see characteristic forest structures develop that reflect fire return intervals and

become more resilient with increasing fire intensity.
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Fuel Moisture Loading and Fire Behavior: Coupling %) Los Alamos

NATIONAL LABORATORY

oy to Fire
Hydrologic Models informing Fire Behavior models.
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Cooling by notural
convection

- Species response to soil water. - Amount of water held in the canopy.
- Ecosystem characteristic. - Determined by weather & vegetation structure.
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Forest Structure Management & Fuel Moisture Modeling
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Results: Compare Low Density Forest Fire to High Density Forest Fire  ‘@!osAlames

High density forest results in a canopy fire, where as low density forest results in low
intensity surface fire.

Canopy fire is a result of 1) lower fuel moisture loading and 2) increased ‘ladder’

fuels.
Wind direction 6 m/s @ 25m height

Low Forest Density High Forest Density

LA-UR-24-20643
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Results: Live Fuel Moisture Gradient Drives Fire Spread & Intensity 1@ Los Alamos

Fire moves up hill due to decreased fuel moisture loading (fire simulation neglected
topography, but hydrological simulation accounted for topography).

Wind direction 6 m/s @ 25m height
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| Moisture: Canopy Energy Balance Model @ tenlames
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Dead Fue

Solar heating exerts strong controls on fuel moisture loading in
humid forests. ~ Kreye et al., 2018
Determined by weather and vegetation structure.

e Step 1) Find all locations in domain where fuel casts shade.
o Step 2) Sum all shade being cast on fuel for given time step.

o Step 3) Simulate surface energy balance for each cell with fuel
using meteorological data.

NE\NN
\

0=(1- a)QShortWave + Qf;ggwaveNEt + Q%qu)entHeat + Q.E'Tg;z)sibleHeat
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Fuel Moisture & Forest Structure ®tesaames
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WoldView High-resolution Satellite imagery & Terrestrial
lidar— Forest characterization (Chuck Abolt)

Target (lidar-derived) GHM Estimated CHM
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Optimizing the Use of Prescribed Fire for Carbon, Water, & Fire
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Risk
o« How does forest structure influence 1. ecosystem stability (carbon storage), 2. water
resources, and 3. wildfire risk?

o How do we optimize for these ecosystem services? TerreStr_i? -
Stabilization
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