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The Colorado River -
emblematic of western US systems under stress
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The Colorado River —

emblematic of western US systems under stress

Warming

2°C: BEYOND THE LIMIT

This giant climate hot
spot is robbing the
West of its water
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What is the role
of groundwater

iIn mountain
streamflow
generation?



East River, CO (750 km?)

DOE/LBNL Watershed Function Scientific Focus Area

Hubbard et
al., 2018 (VZ))
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Objective: Assess impacts of warming and drought on
hydro-biogeochemical functioning of mountainous
watersheds from seasonal to decadal timescales
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East River, CO (750 km?

Integrated Hydrologic Modeling Approach
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East River Model Built on Extensive Data
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East River Model Built on Extensive Data
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Groundwater = 26+3% streamflow




Groundwater to streams varies in space
function of water table elevation

Net Groundwater Gaining/Losing
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Groundwater to streams varies in space
function of water table elevation
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Groundwater to streams varies in time
function of climate (losing)

Average Stream loss to
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Net losing in the springtime: snowmelt in non-perennial
streams moves into subsurface.




Groundwater to streams varies in time o
function of climate (losing) & GW storage (gaining)
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Groundwater Storage: Historical

low/no
monsoon
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Groundwater Storage: +4°C warming
(Simple) Everything Everywhere All at Once @
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*Historical climate shock (PET/P>1)

Groundwater storage never achieves historical average conditions even with
simulated wet periods.



Groundwater storage loss with warming is not
uniformly distributed

Change in Water




Groundwater storage loss with warming is not
uniformly distributed

Change in Water
Table (m)
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* Greatest declines in catchments where
conifer forest is most dense

« Summer warming largest contributor to loss.

* Increased PET in energy-limited portions of
the basin drive water table declines.



Streamflow reduction related to change in temperature (AT)
(Ignore groundwater storage) — .
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Streamflow reduction related to change in temperature (AT)
(Ignore groundwater storage) |
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Streamflow reductions increase if GW storage declines
included (AS) . ,, R
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Reduced GW inflows can no longer compensate for
increased vegetation water use in the summer



Where is the bottom of the watershed?

* Depth below which
groundwater is negligible.

* Range from 10s to 100s of
meters and highly
uncertain.

* Does the active circulation
depth affect drought
response?

Condon et al., 2019 (WRR)



Observed hydraulic conductivity for

erystalline bedrock What is the effect of groundwater circulation

. . depth on streamflow generation?
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Observed hydraulic conductivity for
crystalline bedrock
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What is the effect of groundwater circulation

depth on streamflow generation?

CDF
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DL = deep circulation, 1% porosity

SL = shallow circulation, 1% porosity

DH = deep circulation, 3% porosity

SH = shallow circulation, 3% porosity

Shallow
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>30 m (8% of flow)
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<8 m (13% of flow)

100 m (50% of flow)



Land Surface

o o I What is the effect of
o B i groundwater circulation
s F—W\N depth on streamflow

wl) N\ WE=L e )™ generation avg. climate

* Average climate conditions based on
snotel, PRISM and ASO information



Deep Land Surface
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What is the effect of
groundwater circulation
depth on streamflow
generation avg. climate

* Average climate conditions based on
snotel, PRISM and ASO information

* Peak flows and timing are similar
between deep and shallow cases.

e Streamflow response not overtly
different based on circulation depth
given average climate inputs.

* Porosity (1-3%) is not a first-order
control on hydrograph.

DL = deep circulation, 1% porosity
SL = shallow circulation, 1% porosity
DH = deep circulation, 3% porosity
SH = shallow circulation, 3% porosity



Land Surface
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What is the effect of
groundwater circulation
depth on streamflow
generation with drought

* “Frankenstein” extreme drought
(stitch together observed warmest,
driest seasonal climate).

* Deep case maintains streamflow
along its main stem during drought.

e Shallow case goes dry July.

* Higher porosity buffers drought
response more in the deeper case.

DL = deep circulation, 1% porosity
SL = shallow circulation, 1% porosity
DH = deep circulation, 3% porosity
SH = shallow circulation, 3% porosity
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Average Streamflow (m3/s)
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How about groundwater recovery?

Shallow Circulation

Recovery in <2 years.

High resilience

Daily Change GW Storage from
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Brief aside: Current work on
sensitivity of non-perennial streams

to climate and watershed traits SNOW processes vegetation
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Key Points

Groundwater
contributions to
streamflow are
significant and stable
water source but do
vary intime as a
function of
groundwater storage.




Key Points

Forest water use in
upland catchments
drives groundwater
storage reductionsin a
warmer world.




Key Points

Inclusion of groundwater
storage deficits are
estimated to double
streamflow reductions
and push the East River
toward dry conditions
during low precipitation
years.




Key Points

Groundwater circulation
depth is a fundamental
control on streamflow
response to drought and
groundwater recovery
time.



Thank you!
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